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Resistance Effects on Hydraulic Instability 

By R. F. DRESSLER and F. V. POHLE 

<Q* *•* tm c^e. •y „u„UUUv, ^-^ have ^n ^e 
concerning the flow of water down an inclined open channel. Hydrauiicians 
have evolved empirical laws in confusing multiplicity to de^ciibe a uniform 
flow a<s a function of the slope and the resistance caused by friction with the 
channel walls and by turbulence. Each of the laws has its own best rarge of 
applicability, but most aw of the same basic type, vu. the effective resistance 
is considered in the momentum equation as an opposing body force of form 
—Xu*/y", u being the velocity, y the "hydraulic radius" and X a coefficient 
describing the channel roughness, which in this notation is independent of u 
and y. The exponents m, n > 0 have specific values characteristic of the differ- 
ent formulas. For a wide rectangular channel, y will be also the depth of the 
water. 

A uniform (turbulent) flow with a free surface, being subject to some such 
resistance law, sometimes reaches a condition of instability, then changes into 
a complicated progressing wave pattern called "roll v.avcs" which are periodic 
in distance, with the profile moving downstream faster than the water particles. 
Mathematical analyses have been made of certain aspects of the final roll wave 
motion by Thomas [1] and one of the present authors [21. Results giving neces- 
sary criteria have been obtained by conridering the correct elope o£ the roll wave 
profile or by satisfying the energy inequality at the moving discontinuities 
(bores). Our present purpose, however, is rather to investigate the instability 
of the original uniform flow in its dependence ttpon the specific resistance function 
assumed, following the method of Jeffreys [3] who first did thus in 1925 for the 
Chezy formula (n » 2, m — 1 in our present notation). The criterion obtained 
by Jeffreys for instability is identical with the condition later obtained for roll 
wave formation in [1] and [2]. Each of the papers [1], [2] and {?.} used the Chezy 
resistance fuuetiuu. 

In 1940 Keulegan and Patterson [4] derived a stability criterion for the 
Manning formula, based upon an expression for wave celerity due to Boussincsq. 
Another type of stability argument was later used by Vedernikov [51, using 
certain approximations of Saint Venant. His method is rather complicated, 
but the results are applicable for a general resistance term. More recently 
Craya [6] has refined this approach by considering the growth of an infinitesimal 
shock ("elementary wave") with results applying also in the case of a general 
resistance. From the qualitative standpoint, Cornish [7], with appendix by 
Harold Jeffreys, has presented some interesting remarks on the formation of roll 
waves with respect to the resistive action of the stream bed. 
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Using the shock energy inequality to construct actual roll wave solutions, 
it was observed in [2] that such solutions could never be constructed if the varia- 
tion of resistance effect with depth was ignored. That ie, if the resistance de- 
pended only on the square of the velocity, the energy shock condition for the 
bores of the waves would always be violated. Such a simplifying assumption 
on the resiat&nee is sometimes made, however, particularly when variations in 
depth are considered to be relatively small. We wish now to determine whether 
agreement between the stability approach and the roll wave approach extend*) 
also to this cave, and to see more generally how instability depends on the form 
of the resistance function. That is, one wishes to see what particular quantities 
in the resistance mechanism can lead to instability and roll waved. This present 
investigation wil1 adapt tne method of Jeffreys to s general resistance function, 
and results will be compared with those obtained by the other authors mentioned 
above, using different approaches to the problem. 

In a two-dimensional flow, let u be the velocity component parallel to the 
stream bed, inclined at an angle 0 below the horizontal, and let y be the depth of 
water.  The non-linear shallow water equations are then 

u, -f uu. + g cos ty» * 0 sin 0 - (Xu"/|T) 
(1) 

yu. + uy. + y, « 0. 

The Chezy formula corresponds ton— 1, n * 2; the Manning formula to 
m <• 4/3, n>2; while in the various Lea and Barnes expressions, m varies from 
1.13 to 1.64 and n from 1.7 to 2.15 (see King [8]). 

The possible uniform flows are given by u — U,y — Y where 

(2) 0 - («E*_r- 
Considering small deviations given by u «• U + u(z,f), y — Y + POM) aad 
linearizing yield two equations for u and y, 

.._   , _       am sin 0 _      .. nU*~l _ 
u, + uu, + g cos 9y. « •—p— y - A —— u 

(3) 
Vy. + Yu. + y, - 0. 

When y is eliminated, we get the second order linear equation for u{x,t), 

utt + 2rju., + (IT - gY cos 9)^ + ^- u, 

•1- \mg%m 9 + —•—j u, - 0. 

We now study the time growth or decay of the class of progressing wave solo- 
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toons of type 

with wave speed a/0 and wave lenjrth proport inn»! to ! /jS. Let 7 — r + is; then 
insertion of the aoiutiou* A exp (7* + wit} iuto (4) implies the following relation 
between 7 and /I 

W       » - "^~ ~ <W * (*7y£" -*'•»'«••-**•»»» •)"*• 
For stability we require both roots to be in the Sef' ha'/ of the complex 7- 

plane.   If parameters are adjusted so that the real part of tht first square not in 
(5) is equal to XntT",/21'", then the corresponding 7 value will be on the imagi- 
nary axis, and the other value in the left haif-piane. We therefore equate this 
square root to\nl'm~l/2Ym -f it, separate reals and imaginaries, eliminate S, and 
use relation (2).  The condition for the right root to be on the s-axis is then 

(6) si V r~~* •«• • - »"X" cos" #. 

When the expression on the left is greater or smaller, it can be shown that the 
root moves to the left or right, respectively.   Considering the expressions in 
(6) as functions of 9, we see that equation (6) must have exactly one 6 solution 
between 0 and »/2.  The stability criterion for general resistance is thus 

(7) «V^r*~«b" # 0 »*V cos* # 

implying stability for the two top signs, and instability for the bottom sign. 
The condition for instability can be put into an equivalent form, using (2), 

(8) U > i VtKcos#, 

which is identical with the Vtdernikov and Craya results, obtained by other 
methods and assumptions. 

The above instability criterion for the Chesy formula reduces to tan 6 > 
4A, the result obtained in (1), (2], and [3J. For the Manning formula (<n » 4/3, 
» - 2), our result is 

(9) V > | f Y cos # 

which agrees with the result of Keulegan and Patterson except for the absence 
of the factor cos • in their criterion. 

To see what is U e essential non-linearity in (1) causing instability, we now 
two special omit cases of (7): 
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Case 1:   m -* 0, n > 0. 
Now (7) reduces to only one possibility 

0 < n'V cos" 8, 

hence we conclude that any flow governed by a resistance varying with any 
power of velocity, but independent of depth, must remain stable. 

Cate 2:   n -»0, m > 0. 
By virtue of the law for uniform regime Y — (X/y sin 9)>/m, the only possi- 

bility for (7) is the equality 

gT-sin* 6 « X*. 

Both y toots move to the x-axi*, slill a region of stability. Although this case, 
describing a type of hydraulic Coulomb friction, may not correspond to actual 
flows, the analysis nevertheless indicates that both effects of depth and velocity 
dependence operating simultaneously are needed to produce instability. For 
this reason, since one-dimensional compressible gas flow is governed by the 
same equations, with resistance depending only on velocity, one would not 
expect any analogous type of instability to develop in such flows. 
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